댓글 0조회 수 249344추천 수 0
?

단축키

이전 문서

다음 문서

+ - Up Down Comment Print
?

단축키

이전 문서

다음 문서

+ - Up Down Comment Print

http://link.springer.com/article/10.1007/s12206-014-1206-z#page-1

 

Real-time detection of surface cracks on silicon wafers during laser beam irradiation

  • Sungho Choi
  • , Sung-Hee Yoon
  • , Kyung-Young Jhang 
  • , Wan-Soon Shin

Abstract

In this paper, a real-time in situ method to detect surface crack initiation on silicon wafers during laser beam irradiation is proposed. This method collects scattered light from the silicon wafer surface subjected to the laser irradiation. When the crack is initiated, the laser beam is strongly scattered by the crack so that the proposed method can monitor the time of crack initiation based on the increases of the level of the scattering signal. In order to demonstrate the performance of this method, a silicon wafer specimen was illuminated by a continuous wave (CW) fiber laser beam (wavelength of 1,070 nm) and the scattered light was detected at three different laser powers. The scattering signal showed a very high level at the time of crack initiation. The detected crack initiation times were 11.6 s, 5.5 s, and 2.5 s at irradiances of 130 W/cm2, 149 W/cm2, and 168 W/cm2, respectively. These results agree well with the theoretical predictions. Based on these results, we demonstrated that the proposed method is very effective for the real-time in situ detection of surface cracking induced by laser beam irradiation on silicon wafers.


  • Full-range stress–strain curve estimation of aluminum alloys using machine learning-aided ultrasound

  • Nondestructive Inspection of Directed Energy Deposited Components Using Scanning Acoustic Microscopy with Metalworking Fluids

  • Nondestructive Inspection of Cylindrical Components Repaired Via Directed Energy Deposition Using Scanning Acoustic Microscopy with Metal Lubricants

  • Plastic properties estimation of aluminum alloys using machine learning of ultrasonic and eddy current data

  • Calibration method using a narrowband signal for measurement of the acoustic nonlinearity parameter

  • Comparisons of second- and third-order ultrasonic nonlinearity parameters measured using through-transmission and pulse-echo methods

  • In-situ and Layer-by-layer Grain Size Estimation of Additively Manufactured Metal Components using Femtosecond Laser Ultrasonic Technique (Submitted)

  • Microstructural Characterization of Additively Manufactured Metal Components Using Linear and Nonlinear Ultrasonic Techniques

  • Tensile properties evaluation of additively manufactured Ti-6Al-4V/yttria-stabilized zirconia composite using absolute nonlinear-ultrasonic technique (Submitted)

  • Generation and Measurement of Gigahertz Ultrasonic Waves in Additively Manufactured Thin Metal Components using Femtosecond Laser and Application to In-situ Grain size Monitoring (Submitted)

  • Porosity evaluation of additive manufactured parts: ultrasonic testing and eddy current testing

  • Nondestructive evaluation of micro-oxide inclusions in additively manufactured metal parts using nonlinear ultrasonic technique

  • Mechanical properties estimation of additively manufactured metal components using femtosecond laser ultrasonics and laser polishing

  • Experimental Verification of Contact Acoustic Nonlinearity at Rough Contact Interfaces

  • Compensation of a Second Harmonic Wave Included in an Incident Ultrasonic Wave for the Precise Measurement of the Acoustic Nonlinearity Parameter

  • Measurement of Absolute Acoustic Nonlinearity Parameter Using Laser-Ultrasonic Detection

  • Rapid Molecular Diagnostic Sensor Based on Ball-Lensed Optical Fibers

  • Porosity Evaluation of Additively Manufactured Components Using Deep Learning‑based Ultrasonic Nondestructive Testing (Editor's pick)

  • Deep Learning-Based Ultrasonic Testing to Evaluate the Porosity of Additively Manufactured Parts with Rough Surfaces

  • Analysis of the influence of surface roughness on measurement of ultrasonic nonlinearity parameter using contact-type transducer

Board Pagination ‹ Prev 1 2 3 4 5 6 7 8 9 10 Next ›
/ 10
Designed by hikaru100

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소

SketchBook5,스케치북5

SketchBook5,스케치북5

SketchBook5,스케치북5

SketchBook5,스케치북5

ISNDE Laboratory
203-2,Engineering Center Annex
Hanyang University,
222 Wangsimni-ro, Seongdong-gu
Seoul 04763, Korea
04763 서울특별시 성동구 왕십리로 222
한양대학교 공업센터 별관 203-2호
지능계측 및 비파괴평가 연구실
Tel: 02 - 2220 - 4220
Fax: 02 - 2299 - 7207