?

단축키

이전 문서

다음 문서

+ - Up Down Comment Print
?

단축키

이전 문서

다음 문서

+ - Up Down Comment Print

Experimental Comparison of Nonlinear Parameters Obtained from Absolute Measurement and Relative Measurement


http://aip.scitation.org/doi/abs/10.1063/1.4940513



View Affiliations
 
ABSTRACT
The second-order ultrasonic nonlinear parameter β is obtained from the displacement of fundamental and second-harmonic frequency components, so it needs to measure the absolute displacement of fundamental and second-harmonic frequency components. However, the displacement of high-frequency harmonic component is not easily measured because that is very weak. Therefore, many researchers have measured a relative ultrasonic nonlinear parameter β` using the detected signal instead of measuring absolute displacement. The parameter β` is more convenient than measuring the parameter β, which is effective to compare before and after damage of a material; however, the parameter β` has never been verified in comparison with absolute ultrasonic nonlinear parameter. This study compares the relative parameter with the absolute parameter, and we make it clear that the fractional ratio of the relative parameters is identical to that of the absolute parameters when the detected signal amplitude is linearly proportional to the actual displacement amplitude. For the experimental verification, the absolute and the relative parameters were measured for two different materials, fused silica and Al6061-T6. The experimental results showed that the ratio of absolute parameters and that of relative parameters were in good agreement.

  • Full-range stress–strain curve estimation of aluminum alloys using machine learning-aided ultrasound

  • Nondestructive Inspection of Directed Energy Deposited Components Using Scanning Acoustic Microscopy with Metalworking Fluids

  • Nondestructive Inspection of Cylindrical Components Repaired Via Directed Energy Deposition Using Scanning Acoustic Microscopy with Metal Lubricants

  • Plastic properties estimation of aluminum alloys using machine learning of ultrasonic and eddy current data

  • Calibration method using a narrowband signal for measurement of the acoustic nonlinearity parameter

  • Comparisons of second- and third-order ultrasonic nonlinearity parameters measured using through-transmission and pulse-echo methods

  • In-situ and Layer-by-layer Grain Size Estimation of Additively Manufactured Metal Components using Femtosecond Laser Ultrasonic Technique (Submitted)

  • Microstructural Characterization of Additively Manufactured Metal Components Using Linear and Nonlinear Ultrasonic Techniques

  • Tensile properties evaluation of additively manufactured Ti-6Al-4V/yttria-stabilized zirconia composite using absolute nonlinear-ultrasonic technique (Submitted)

  • Generation and Measurement of Gigahertz Ultrasonic Waves in Additively Manufactured Thin Metal Components using Femtosecond Laser and Application to In-situ Grain size Monitoring (Submitted)

  • Porosity evaluation of additive manufactured parts: ultrasonic testing and eddy current testing

  • Nondestructive evaluation of micro-oxide inclusions in additively manufactured metal parts using nonlinear ultrasonic technique

  • Mechanical properties estimation of additively manufactured metal components using femtosecond laser ultrasonics and laser polishing

  • Experimental Verification of Contact Acoustic Nonlinearity at Rough Contact Interfaces

  • Compensation of a Second Harmonic Wave Included in an Incident Ultrasonic Wave for the Precise Measurement of the Acoustic Nonlinearity Parameter

  • Measurement of Absolute Acoustic Nonlinearity Parameter Using Laser-Ultrasonic Detection

  • Rapid Molecular Diagnostic Sensor Based on Ball-Lensed Optical Fibers

  • Porosity Evaluation of Additively Manufactured Components Using Deep Learning‑based Ultrasonic Nondestructive Testing (Editor's pick)

  • Deep Learning-Based Ultrasonic Testing to Evaluate the Porosity of Additively Manufactured Parts with Rough Surfaces

  • Analysis of the influence of surface roughness on measurement of ultrasonic nonlinearity parameter using contact-type transducer

Board Pagination ‹ Prev 1 2 3 4 5 6 7 8 9 10 Next ›
/ 10
Designed by hikaru100

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소

SketchBook5,스케치북5

SketchBook5,스케치북5

SketchBook5,스케치북5

SketchBook5,스케치북5

ISNDE Laboratory
203-2,Engineering Center Annex
Hanyang University,
222 Wangsimni-ro, Seongdong-gu
Seoul 04763, Korea
04763 서울특별시 성동구 왕십리로 222
한양대학교 공업센터 별관 203-2호
지능계측 및 비파괴평가 연구실
Tel: 02 - 2220 - 4220
Fax: 02 - 2299 - 7207