댓글 0조회 수 140088추천 수 0
?

단축키

이전 문서

다음 문서

+ - Up Down Comment Print
?

단축키

이전 문서

다음 문서

+ - Up Down Comment Print

Comparison of Ultrasonic Nonlinear Parameters Measured by PZT and LiNbO3 Transducers


http://aip.scitation.org/doi/abs/10.1063/1.4940514


View Affiliations
 
ABSTRACT
The ultrasonic nonlinear techniques have been known as effective methods to evaluate a microstructure change of material. The ultrasonic nonlinear characteristic can be evaluated by the second-order ultrasonic nonlinear parameter β determined from the amplitudes of fundamental and second harmonic frequency components. The ultrasonic nonlinear parameter is generally measured by using a contact transducer; PZT and LiNbO3 transducers are commonly used. However, the measurement result may be dependent on the equipment. Here in, we are curious about whether the nonlinear parameters measured by different transducers are identical. Therefore, in this study, we compare the ultrasonic nonlinear parameters measured by different transducers, PZT and LiNbO3. For the experiment, the Al6061 specimens heat treated at 220°C with different aging time 60, 600, and 6000 min were prepared, and then the ultrasonic nonlinear parameter was measured by using two different kinds of transducer, PZT and LiNbO3. The results showed that the tendency of measured nonlinear parameter was similar regardless of the type of transducer.

  • Full-range stress–strain curve estimation of aluminum alloys using machine learning-aided ultrasound

  • Nondestructive Inspection of Directed Energy Deposited Components Using Scanning Acoustic Microscopy with Metalworking Fluids

  • Nondestructive Inspection of Cylindrical Components Repaired Via Directed Energy Deposition Using Scanning Acoustic Microscopy with Metal Lubricants

  • Plastic properties estimation of aluminum alloys using machine learning of ultrasonic and eddy current data

  • Calibration method using a narrowband signal for measurement of the acoustic nonlinearity parameter

  • Comparisons of second- and third-order ultrasonic nonlinearity parameters measured using through-transmission and pulse-echo methods

  • In-situ and Layer-by-layer Grain Size Estimation of Additively Manufactured Metal Components using Femtosecond Laser Ultrasonic Technique (Submitted)

  • Microstructural Characterization of Additively Manufactured Metal Components Using Linear and Nonlinear Ultrasonic Techniques

  • Tensile properties evaluation of additively manufactured Ti-6Al-4V/yttria-stabilized zirconia composite using absolute nonlinear-ultrasonic technique (Submitted)

  • Generation and Measurement of Gigahertz Ultrasonic Waves in Additively Manufactured Thin Metal Components using Femtosecond Laser and Application to In-situ Grain size Monitoring (Submitted)

  • Nondestructive evaluation of micro-oxide inclusions in additively manufactured metal parts using nonlinear ultrasonic technique

  • Mechanical properties estimation of additively manufactured metal components using femtosecond laser ultrasonics and laser polishing

  • Experimental Verification of Contact Acoustic Nonlinearity at Rough Contact Interfaces

  • Compensation of a Second Harmonic Wave Included in an Incident Ultrasonic Wave for the Precise Measurement of the Acoustic Nonlinearity Parameter

  • Measurement of Absolute Acoustic Nonlinearity Parameter Using Laser-Ultrasonic Detection

  • Rapid Molecular Diagnostic Sensor Based on Ball-Lensed Optical Fibers

  • Porosity Evaluation of Additively Manufactured Components Using Deep Learning‑based Ultrasonic Nondestructive Testing (Editor's pick)

  • Deep Learning-Based Ultrasonic Testing to Evaluate the Porosity of Additively Manufactured Parts with Rough Surfaces

  • Analysis of the influence of surface roughness on measurement of ultrasonic nonlinearity parameter using contact-type transducer

  • Indirect Method for Measuring Absolute Acoustic Nonlinearity Parameter Using Surface Acoustic Waves with a Fully Non-Contact Laser-Ultrasonic Technique

Board Pagination ‹ Prev 1 2 3 4 5 6 Next ›
/ 6
Designed by hikaru100

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소

SketchBook5,스케치북5

SketchBook5,스케치북5

SketchBook5,스케치북5

SketchBook5,스케치북5

ISNDE Laboratory
203-2,Engineering Center Annex
Hanyang University,
222 Wangsimni-ro, Seongdong-gu
Seoul 04763, Korea
04763 서울특별시 성동구 왕십리로 222
한양대학교 공업센터 별관 203-2호
지능계측 및 비파괴평가 연구실
Tel: 02 - 2220 - 4220
Fax: 02 - 2299 - 7207