댓글 0조회 수 222552추천 수 0
?

단축키

이전 문서

다음 문서

+ - Up Down Comment Print
?

단축키

이전 문서

다음 문서

+ - Up Down Comment Print

http://www.dbpia.co.kr/Journal/ArticleDetail/3206729


한국비파괴검사학회 > 비파괴검사학회지 > 비파괴검사학회지 제33권 제3호


비파괴검사학회지 제33권 제3호, 2013.6, 264-269 (6 pages)

Feasibility of MFC (Macro-Fiber Composite) Transducers for Guided Wave Technique

Gang Ren, Dongseok Yun, Hogeon Seo, Minkyoo Song, Kyung-Young Jhang식별저자
영어 초록
  Since MFC(macro-fiber composite) transducer has been developed, many researchers have tried to apply this transducer on SHM(structural health monitoring), because it is so flexible and durable that it can be easily embedded to various kinds of structures. The objective of this paper is to figure out the benefits and feasibility of applying MFC transducers to guided wave technique. For this, we have experimentally tested the performance of MFC patches as transmitter and sensors for excitation and reception of guided waves on the thin aluminum alloy plate. In order to enhance the signal accuracy, we applied the FIR filter for noise reduction as well as used STFT(short-time Fourier transform) algorithm to image the guided wave characteristics clearly. From the results, the guided wave generated based on MFC showed good agreement with its theoretical dispersion curves. Moreover, the ultrasonic Lamb wave techniques based on MFC patches in pitch-catch manner was tested for detection of surface notch defects of which depths are 10%, 20%, 30% and 40% of the aluminum plate thickness. Results showed that the notch was detectable well when the notch depth was 10% of the thickness or greater.
목차
Abstract
1. Introduction
2. Micro-Fiber Composite (MFC) Transducer
3. Experiments
4. Results and Analysis
5. Conclusions
References
키워드
상세서지
  • 발행기관 : 한국비파괴검사학회
  • 자료유형 : 전자저널 논문
  • 등재정보 : KCI 등재
  • 작성언어 : 영어
  • 파일형식 : Text PDF
  • KORMARC 보기
  • URL : http://www.dbpia.co.kr/Article/3206729 복사 즐겨찾기로 추가

  1. Full-range stress–strain curve estimation of aluminum alloys using machine learning-aided ultrasound

    Date2024.03.19 CategoryInternational Views35
    Read More
  2. Nondestructive Inspection of Directed Energy Deposited Components Using Scanning Acoustic Microscopy with Metalworking Fluids

    Date2024.03.19 CategoryInternational Views31
    Read More
  3. Nondestructive Inspection of Cylindrical Components Repaired Via Directed Energy Deposition Using Scanning Acoustic Microscopy with Metal Lubricants

    Date2024.03.19 CategoryInternational Views191
    Read More
  4. Plastic properties estimation of aluminum alloys using machine learning of ultrasonic and eddy current data

    Date2024.03.19 CategoryInternational Views66
    Read More
  5. Calibration method using a narrowband signal for measurement of the acoustic nonlinearity parameter

    Date2024.03.19 CategoryInternational Views30
    Read More
  6. Comparisons of second- and third-order ultrasonic nonlinearity parameters measured using through-transmission and pulse-echo methods

    Date2022.11.15 CategoryInternational Views2467
    Read More
  7. In-situ and Layer-by-layer Grain Size Estimation of Additively Manufactured Metal Components using Femtosecond Laser Ultrasonic Technique (Submitted)

    Date2022.02.21 CategoryInternational Views953
    Read More
  8. Microstructural Characterization of Additively Manufactured Metal Components Using Linear and Nonlinear Ultrasonic Techniques

    Date2022.02.21 CategoryInternational Views1273
    Read More
  9. Tensile properties evaluation of additively manufactured Ti-6Al-4V/yttria-stabilized zirconia composite using absolute nonlinear-ultrasonic technique (Submitted)

    Date2022.02.21 CategoryInternational Views12461
    Read More
  10. Generation and Measurement of Gigahertz Ultrasonic Waves in Additively Manufactured Thin Metal Components using Femtosecond Laser and Application to In-situ Grain size Monitoring (Submitted)

    Date2022.02.21 CategoryInternational Views26201
    Read More
  11. Porosity evaluation of additive manufactured parts: ultrasonic testing and eddy current testing

    Date2021.08.25 CategoryDomestic Views124174
    Read More
  12. Nondestructive evaluation of micro-oxide inclusions in additively manufactured metal parts using nonlinear ultrasonic technique

    Date2021.08.25 CategoryInternational Views20084
    Read More
  13. Mechanical properties estimation of additively manufactured metal components using femtosecond laser ultrasonics and laser polishing

    Date2021.08.25 CategoryInternational Views28928
    Read More
  14. Experimental Verification of Contact Acoustic Nonlinearity at Rough Contact Interfaces

    Date2021.08.25 CategoryInternational Views49940
    Read More
  15. Compensation of a Second Harmonic Wave Included in an Incident Ultrasonic Wave for the Precise Measurement of the Acoustic Nonlinearity Parameter

    Date2021.08.25 CategoryInternational Views45558
    Read More
  16. Measurement of Absolute Acoustic Nonlinearity Parameter Using Laser-Ultrasonic Detection

    Date2021.08.25 CategoryInternational Views43184
    Read More
  17. Rapid Molecular Diagnostic Sensor Based on Ball-Lensed Optical Fibers

    Date2021.08.25 CategoryInternational Views36390
    Read More
  18. Porosity Evaluation of Additively Manufactured Components Using Deep Learning‑based Ultrasonic Nondestructive Testing (Editor's pick)

    Date2021.08.25 CategoryInternational Views12109
    Read More
  19. Deep Learning-Based Ultrasonic Testing to Evaluate the Porosity of Additively Manufactured Parts with Rough Surfaces

    Date2021.08.25 CategoryInternational Views21458
    Read More
  20. Analysis of the influence of surface roughness on measurement of ultrasonic nonlinearity parameter using contact-type transducer

    Date2021.08.25 CategoryInternational Views505453
    Read More
Board Pagination ‹ Prev 1 2 3 4 5 6 7 8 9 10 Next ›
/ 10
Designed by hikaru100

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소

SketchBook5,스케치북5

SketchBook5,스케치북5

SketchBook5,스케치북5

SketchBook5,스케치북5

ISNDE Laboratory
203-2,Engineering Center Annex
Hanyang University,
222 Wangsimni-ro, Seongdong-gu
Seoul 04763, Korea
04763 서울특별시 성동구 왕십리로 222
한양대학교 공업센터 별관 203-2호
지능계측 및 비파괴평가 연구실
Tel: 02 - 2220 - 4220
Fax: 02 - 2299 - 7207